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We propose an extension of the nonequilibrium invaded cluster �IC� algorithm, which reestablishes a correct
scaling of fluctuations at criticality and also self-adjusts to the critical temperature. We show that by introduc-
ing a single constraint to the intrinsic quantity of the IC algorithm the temperature becomes well defined and
the sampling of the equilibrium ensemble is regained. The procedure is applied to the Potts model in two and
three dimensions.
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I. INTRODUCTION

Monte Carlo �MC� studies of phase transitions have given
rise to several cluster algorithms such as the Swendsen-Wang
�SW� �1� or Wolff algorithm �2�, which brought an important
improvement to simulations by reducing the critical slowing
down. More recently another cluster algorithm was proposed
by Machta et al. �3�, inspired by the invasion percolation
with an additional advantage that it self-regulates to the criti-
cal point and does not require prior knowledge of the critical
temperature. It was applied to various classical models of
phase transitions �3,4�, and extended to more complex cases,
from frustration �5� to tricritical points �6�. The price to be
paid is that the configurations generated by this self-
adjusting nonequilibrium process are not distributed accord-
ing to the canonical ensemble �3,7�. Thus, although the IC
algorithm can be used to analyze a certain number of prop-
erties at criticality, those which are describing fluctuations
remain out of its reach. This question was analyzed from
different aspects �7,8� and an alternative self-adjusting algo-
rithm based on a modification of the Swendsen-Wang algo-
rithm was proposed �9�.

By following a different approach, we propose an equilib-
riumlike invaded cluster �EIC� algorithm obtained by con-
straining temperature uncertainty characteristic to the in-
vaded cluster �IC� algorithm into limits compatible with the
equilibrium distribution. We show that by applying this
single constraint to the IC algorithm, correct scaling proper-
ties of thermodynamic observables are reproduced, while the
algorithm still gives the critical temperature as an output.
The method is demonstrated on the example of the Potts
model in two and three dimensions.

We consider the Potts model �10� defined by the Hamil-
tonian

H = − J�
�i,j�

��si,sj
− 1� , �1�

where si denotes the q-state Potts variable at the lattice site i
and the summation runs over the nearest neighbors only. The
cluster algorithms including the IC algorithm are based on
the Fortuin and Kasteleyn �FK� �11� expansion, which shows

that the partition function of the model �1� is equivalent to
the one of the random-cluster �RC� model, which can be
written as

Z = �
���

pb����1 − p�B−b���qc���, �2�

and understood as a generalized bond percolation, where

p = 1 − e−�J �3�

is the bond probability �� is the Boltzmann factor�. The sum-
mation in Eq. �2� runs over the set of all the graphs on the
lattice �, while each graph � represents one possible bond
configuration. B is the number of the lattice edges, b��� de-
notes the number of bonds, and c��� is the number of con-
nected components �FK clusters� in the graph �.

II. ALGORITHM

In standard cluster algorithms such as the SW or Wolff
algorithm, FK clusters are formed on a lattice by adding
bonds between neighbors in the same state with a
temperature-dependent probability p �3�. The configuration is
then randomized by flipping all the clusters to different states
and the procedure is repeated from the beginning. In the IC
algorithm by Machta et al. the cluster formation phase is
different since the probability p is not given in advance.
Bonds are placed randomly between neighbors in the same
state, until one of the clusters percolates. This is considered
as a signature of the critical point in the system of finite size.
The adding of bonds then stops; clusters are randomized and
ready for the next iteration. The output that is recorded is the
ratio

p� =
b���
e���

, �4�

where b��� is the number of added bonds and e��� the num-
ber of neighboring pairs in the same state for a given graph �
on a lattice. The average p̄� is identified with the quantity p,
yielding a critical temperature estimate. The procedure is
self-adjusting to the critical temperature imposed by the
stopping condition. Namely, if during one step the excessive
number of bonds is added, which would statistically contrib-
ute to a much lower temperature, in the next step the clusters
will percolate easier due to the large number of satisfied
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neighbors created, which will statistically contribute to tem-
peratures much higher than critical. The problem is that the
resulting oscillations in p� remain too large during the entire
process. As a result it does not sample the canonical en-
semble, but its proper IC ensemble, giving much broader
distribution. Since in the thermodynamic limit �var�E� /E
→0 still holds, the IC algorithm is assumed to become
equivalent in that limit to the canonical ensemble and to
produce the same average values, including the correct Tc.
However, the convergence with size is more difficult to con-
trol. Also, the variances in energy or magnetization do not
describe the equilibrium fluctuations, but rather the specific
IC dynamics.

It is important here to notice that the variable p of Eq. �2�
is an a priori bond probability and consequently p� should
be distributed according to Gaussian distribution with p̄�RC
= p and the width �var�p��	RC�L−d/2. In the equilibrium clus-
ter algorithms p� appears as a random input variable which
obviously is distributed according to normal distribution. As
already mentioned, the distribution of p� generated as an
output of the IC algorithm is far broader than L−d/2 �3,7�.

We propose a simple restriction to the IC algorithm,
which sets the allowed range of p� to be proportional to L−d/2

and strictly less than �var�p��	RC. The procedure is straight-
forward and works as follows. The iterations are grouped in
intervals of Na MC steps.

�a� During the first interval of Na MC steps we follow the
original IC rule. The average value p̄�,0 over the first Na
iterations is found, to be used as an approximation for the
next Na steps.

�b� In the next interval of Na MC steps the stopping rule is
modified by requiring the system to percolate but with the
constraint p̄�,0−v� p�� p̄�,0+v, where v is the parameter set
to be proportional to L−d/2. If the system percolates before
the lower bound of p� is reached, the bonds are still added
until the lower bound is attained. If the upper bound of p� is
reached before percolation, the process is stopped without
requiring the system to percolate. At the end of the interval,
the new average over p�, p̄�,1 is calculated.

�c� In every consecutive interval i of Na steps the bounds
of p� are set by p̄�,i−1−v� p�� p̄�,i−1+v and the same stop-
ping rule as in �b� applied.

The first few intervals of Na steps are discarded and the
configurations are recorded after the steady state has been
reached.

We remark that the width of the resulting distribution of
p� has two contributions: �a� from the fluctuations of p�

within a group of Na MC steps proportional to v�L−d/2; �b�
from the fluctuations of the mean value p̄�,i that correspond
to the actual temperature fluctuations, producing the width of
order L−1/	�L−d/2 if the heat capacity exponent 
�0, or of
order L−d/2 if 
�0. Even when it decays as L−d/2, it is much
smaller than the contribution from �a� because p̄�,i is a result
from averaging over Na MC steps. The value of Na is re-
quired to be large enough to allow the uncertainty of values
of p̄�,i to be less than the variation of p̄�,i between the groups
i. The �var�p�� of the EIC algorithm thus can be regulated by
changing v and is proportional to L−d/2.

Consequently, the width of the distribution of p� allowed
during the entire process of iterations is within the same

limits as in the conventional cluster algorithms, and we can
consider that the temperature during the whole process is
equally well defined.

The question of the ensemble that the EIC algorithm gen-
erates is less trivial and we do not attempt here any detailed
study of the exact connection between the EIC and the ca-
nonical ensemble. We only point out that there is a nonzero
probability of generating any spin configuration with any
value of p�, so the ergodicity of the procedure is fulfilled.
The numerical evidence will be given below that the EIC
algorithm samples the canonical ensemble well.

III. RESULTS

The EIC algorithm was applied to the cases q=2,3 and
q=2 of the Potts model in two and three dimensions, respec-
tively. In two dimensions �2D� exact results are known both
for critical temperature and for the exponents, while in 3D
very accurate estimations are available �14�. The simulations
were performed on lattices with periodic boundary condi-
tions, and moderate sizes up to L=226 and L=64 in 2D and
3D, respectively. The statistics varied from 106 iterations for
smaller to 2�105 iterations for the largest lattice sizes. Free
parameters of the algorithm were chosen to be v=L−d/2 /10
and interval Na=100 Monte Carlo steps �MCS�. Percolation
was established by the topological rule, i.e., by the condition
that the infinite cluster wraps around the lattice.

We include for comparison the results obtained by the SW
algorithm with the same lattice sizes and using the same
statistics performed at two different temperatures: �a� at in-
finite system critical temperature, i.e., for p= pc�L→  �; and
�b� at L-dependent critical temperatures, i.e., for pc�L� ap-
proximated by previously calculated pc�L�	EIC. Such a choice
is justified because the difference between pc�L�	EIC and the
position of, e.g., the susceptibility maximum obtained by the
SW algorithm for the lattice size L is much smaller than its
width.

In Fig. 1 are compared the energy histograms, generated
by EIC, SW, and IC algorithms for the case q=2, D=3. All
three sets were taken for sizes L=16 and L=36 and rescaled
with the same exponent x, set to produce the collapsing fit of
the SW data. The distribution generated by the EIC algo-
rithm is the narrowest one, due to the choice of the arbitrary
constant factor in the parameter v. More important is that the
width of the EIC histogram scales with the same exponent as
the one of the canonical ensemble obtained by the SW algo-
rithm, so that the fluctuations in both ensembles follow the
same law. Also, by tuning the constant factor in v, very good
overlap can be established between the EIC and SW histo-
grams of all sizes. On the other hand, the width of the IC
ensemble scales differently, consistent with the fact that the
corresponding fluctuations follow the specific IC dynamics,
and do not describe the equilibrium energy fluctuations at
criticality.

Let us present now the obtained results for critical point
and critical exponents summarized in Table I.

First we examine the convergence of pc�L� with size. In
Fig. 2 are presented data for pc�L� vs L−1/	, where the exact
�or best known� value for 	 was used. The obtained linear fits
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are very clean in comparison to the extrapolations within the
IC algorithm �cf., e.g., Fig. 1 of the first Ref. in �3��, where
the use of medians was necessary to reduce the additional
size effects. The extrapolations to the limit L→ are com-

pared in Table I to the known results for pc in 2D �calculated
from the analytic expression pc=1− �1+�q�−1 �12�� and in
3D �14� and show the precision up to four or five significant
digits already for modest sizes used here. The estimations of
the temperature critical exponent 1 /	 were obtained from the
power law form pc�L�− pc���L−1/	 by taking the exact
�best known� value for pc��.

The magnetic critical exponent was calculated in three
different ways. We have calculated the fractal dimension of
the percolation cluster s̄max	p=pc

�Lyh and the anomalous di-
mension of the magnetization m̄	p=pc

�L�/	 defined through
the most populated of the q Potts states a, i.e.,

m =
q

�q − 1�Ld maxa
�
i
��si,a

−
1

q
� . �5�

We also examined the fluctuations of magnetization �see Fig.
3� which in equilibrium are related to the susceptibility
�	p=pc

�L�/	 by the relation

� =
Ld

kBT
�m2 − m̄2� , �6�

which assumes the validity of the fluctuation-dissipation
theorem, not fulfilled for the standard IC algorithm.

EIC results for all the quantities presented in Table I agree
with the exact, or best approximate results within a few per-
cent. Although we omit here the analysis of convergence,
visible improvement of results was observed with increasing
L, so that discrepancies could be attributed to relatively mod-
est sizes used. This is also supported by the fact that the
simulations by the SW algorithm with the same sizes pro-
duced very similar results. Compared to those of the standard
IC algorithm �3�, the fits of quantities derived from the mean
values at criticality, such as pc, 1 /	, and � /	, are signifi-
cantly improved. Moreover, the correct exponent is regained

TABLE I. Results for critical exponents obtained by EIC �from
L=64 to 226 for 2D and from L=16 to 64 for 3D� compared to
those by SW algorithm obtained for the same lattice sizes with the
same statistics, and to the exact, or best approximate results.

pc y� yh � /	 � /	

2D, q=2

EIC 0.58575�2� 0.98�1� 1.868�6� 0.132�5� 1.775�7�
SWa 1.875�4� 0.125�3� 1.765�5�
SWb 1.876�5� 0.127�4� 1.750�5�
Exactc 0.585786… 1 15 / 8 1 / 8 7 / 4

2D, q=3

EIC 0.63397�2� 1.19�2� 1.861�6� 0.140�5� 1.745�7�
SWa 1.86�5� 0.136�5� 1.750�8�
SWb 1.88�4� 0.120�4� 1.740�5�
Exactc 0.633974… 6 / 5 28 / 15 2 / 15 26 / 15

3D, q=2

EIC 0.35809�1� 1.590�3� 2.481�3� 0.520�2� 1.987�4�
SWa 2.495�5� 0.506�5� 1.992�5�
SWb 2.490�5� 0.510�4� 1.989�5�
�13,14�d 0.358098�3� 1.587�1� 2.482�1� 0.5181�5� 1.963�1�
aSimulations at pc�L→  �.
bSimulations at pc�L�	EIC.
cExact values �12�.
dBest known values for critical point �13� and exponents �14�.
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FIG. 1. �Color online� Energy histograms w�e� of the EIC, SW,
and IC algorithm for the 3D Ising model and sizes L=16 and L
=36 rescaled with the same exponent x�1.34. ē denotes the aver-
aged energy of each individual curve. Histograms of the SW algo-
rithm were taken at pc�L�	EIC.
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FIG. 2. �Color online� Data of pc�L� for cases D=2, q=2,3 and
D=3, q=2. Lines represent linear fits, using exact or best known
results for 1 / 	 .
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for the fluctuations of the magnetization, and the susceptibil-
ity shows the correct scaling within the same error margins
as within a SW algorithm.

IV. DISCUSSION AND CONCLUSION

To summarize, we have proposed an extension of the IC
algorithm which recovers the correct sampling of the equi-
librium ensemble at criticality and still preserves self-
regulation to the critical temperature. By imposing on the
distribution of the variable p� the width proportional to L−d/2

�compatible with the Gaussian distribution�, we reduced the
uncertainty of the temperature variable to the one in the equi-
librium algorithms and obtained the correct scaling of the
fluctuations at criticality. Furthermore, our intervention does
not slow down the IC algorithm, and the running times per
MCS for the EIC algorithm remain the same. For example, a
run of 105 MCS for the 2D Ising model on an L=64 lattice

requires approximately 500 s on the AMD Opteron 240 pro-
cessor �1.4 GHz�. The procedure is illustrated in several
cases of second-order phase transitions in the Potts model in
two and three dimensions belonging to different universality
classes.

In comparison with the self-regulating algorithm by To-
mita and Okabe �9�, this approach is conceptually different:
their approach is an extension of the SW algorithm which
allows variation in p, which is directly related to the fluctua-
tions of temperature, and the corresponding width is �L−1/	.
As far as the efficiency is compared, the authors of Ref. �9�
argue their algorithm to be faster per individual iterations
since it does not require multiple checking of percolation
during a single iteration. On the other hand, in Ref. �9� not
less than 10 000 MC preparation steps were required before
the iterations could be recorded, while in the EIC approach
not more than 2000 MCS were sufficient. Thus, it would be
interesting to compare the autocorrelation times for the two
methods.

In the future, more detailed study remains to be done of
the ensemble, the leading convergence exponent, the auto-
correlations, and the corresponding dynamic exponent.

The improved convergence and possibility to calculate the
correct scaling of fluctuations may be useful in a number of
problems. It may have a particular advantage in the cases
with quenched disorder and lack of self-averaging, where
calculations at the sample-dependent critical temperatures
have to be performed, and where the standard IC algorithm
was of limited efficiency �15�.
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FIG. 3. �Color online� A log-log plot of the fluctuations of mag-
netization depending on the system size L.

I. BALOG AND K. UZELAC PHYSICAL REVIEW E 77, 050101�R� �2008�

RAPID COMMUNICATIONS

050101-4


